Tentamen Numerical Mathematics 2
 July 10, 2009

Duration: 3 hours.
In front of the questions one finds the weights used to determine the final mark.

Problem 1

a. [2] Assume A is symmetric. Show that the condition for positive definiteness $(x, A x)>$ 0 if $\|x\| \neq 0$ is equivalent to the condition that all eigenvalues of A should be positive.
b. [3] Show by the Gershgorin circle theorems and using (a) that the following matrix admits a Cholesky factorization and make this factorization:

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

c. [2] Draw the graph associated to the following matrix and determine from the graph whether the matrix is reducible or not:

$$
A=\left[\begin{array}{llll}
4 & 2 & 1 & 1 \\
0 & 3 & 0 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Problem 2

a. [3] Let A be diagonizable, i.e. there exists a nonsingular P such that $P^{-1} A P=D$ with D a diagonal matrix. Show that for any eigenvalue μ of the perturbed matrix $A+E$ it holds that

$$
\min _{\lambda \in \sigma(A)}|\lambda-\mu| \leq K_{2}(P)| | E \|_{2}
$$

where $K_{2}(*)$ is the condition number of its argument in the 2-norm. For which matrices A is $K_{2}(P)=1$?
b. [3] Show that the power method converges to the eigenvector corresponding to the eigenvalue with largest magnitude.
c. [2] Describe the QR method to determine eigenvalues of a matrix A. Where does it converge to if the matrix A is real? What determines its convergence? Why is a shift introduced?

Problem 3

a. [3] Describe how orthogonal polynomials are constructed from the basic polynomials $\left\{1, x, x^{2}, \ldots\right\}$. How are in particular the Chebyshev and Legendre polynomials constructed and how are the associated innerproducts defined?
b. [3] How is the minimax problem defined and where is it used for? Why do we turn to the least squares approach to find an approximation to the best approximation of a certain function? And why is the Chebyshev expansion of the function the favourite approximation to the best approximation?
c. [3] Show that the DFT $\hat{f}_{k}=\frac{1}{N} \sum_{0}^{N-1} f_{j} w^{j k}$ for $k=0, \ldots, N-1$ where $w=\exp (-i 2 \pi / N)$ of length $N=2 M$ can be evaluated by two DFTs of length M. What is the advantage of this?

Problem 4

a. [3] Suppose we want to solve the system of ODEs given by $\frac{d}{d t} y=A y$ with $y(0)$ given. Here, y is a vector and A a matrix. Which linear systems have to be solved if we apply to this the Runge-Kutta methods with the following Butcher arrays

0	0	0						
1	$1 / 2$	$1 / 2$	0		$1 / 2$	$1 / 4$	$1 / 4$	
1	1	0						
	0	1		1	$1 / 3$	$2 / 3$		1
$1 / 2$	$1 / 2$							

b. [3] Let $f(x) \in C^{1}$ be defined on $[0,2]$ and $f(0)=0$. Show that $\|f\|_{0} \leq c\left\|f^{\prime}\right\|_{0}$ where the norm is generated by the inner product $(u, v)=\int_{0}^{2} u(x) v(x) d x$ and give c. What is the relevance of this inequality for one-dimensional Poisson problems on the specified interval?
c. [3] Give the discretisation of $u_{t}=u_{x x}$ on [0,1] and $t>0$ using the trapezoidal method in time and the Galerkin approach in space. We have Dirichlet boundary conditions at 0 and 1 and an initial condition for $t=0$.

